바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Search Word: Watershed, Search Result: 3
1
Jinyoung Park(Team of Protected Area Research, National Institute of Ecology) ; Jong Kook Jung(Division of Forest Insect pets and Diseases, National Institute of Forest Science) ; Jin Yeol Cha(Team of Protected Area Research, National Institute of Ecology) ; Jong Bong Choi(Department of Applied Biology, College of Ecology & Environmental Sciences, Kyungpook National University) ; Jong Kyun Park(Department of Applied Biology, College of Ecology & Environmental Sciences, Kyungpook National University) 2020, Vol.1, No.1, pp.41-51 https://doi.org/10.22920/PNIE.2020.1.1.41
초록보기
Abstract

Ground beetle fauna of Wangpi-cheon watershed in Yeongyang-gun to Uljin-gun, Gyeongsangbuk-do was investigated from May to October in 2012. Ground beetles were collected by pitfall trapping. A total of 38 species of 20 genera belonging to 8 subfamilies were identified from 2,486 collected ground beetles. Species richness was high in Pterostichinae (16 species), Carabinae (8 species), Harpalinae (5 species), Callistinae (3 species), Nebriinae (3 species) and others (1 species). Dominant species were Synuchus cycloderus (1,025 individuals) and Aulonocarabus seishinensis seishinensis (332 individuals), Pristosia vigil (133 individuals), and Coptolabrus smaragdinus branickii (117 individuals) in order. Monthly changes in abundance of upper dominante genera Pterostichus, Aulonocarabus, Coptolabrus species and Synuchus, Pristosia, Colpodes species showed that the former had the highest number in August whereas the latter increased in June and September. The genus Pterostichus species were preferred in deciduous forest in Wangpicheon watershed, while the genus Synuchus species were collected in mixes forest adjacent to farmland and recreation facilities and the genera Chlaenius, Harpalus species were collected in mixes forest adjacent to farmland nearby stream. Non-metric multidimensional scaling (NMDS), ground beetles and sites could be divided into two distinct groups: St. 1, St. 2, St. 3 group and St. 4 group. Some species such as Pterostichus orientalis orientalis, P. vicinus and P. bellatrix were particularly abundant at St. 4.


2
Giancarlo Pocholo L. Enriquez(Institute of Biology, University of the Philippines) ; Lillian Jennifer V. Rodriguez(Institute of Biology, University of the Philippines) 2023, Vol.4, No.1, pp.28-42 https://doi.org/10.22920/PNIE.2023.4.1.28
초록보기
Abstract

Seed dispersal supports community structure, maintains genetic connectivity across fragmented landscapes, and influences vegetation assemblages. In the Philippines, only two seed dispersal studies have compared different dispersal agents. We examined the seed dispersal patterns of water, wind, birds, and bats in the Caliraya Watershed, Philippines. We aimed to determine the floral species that were dispersed and how the forest characteristics influenced seed dispersal. By running seed rain traps and drift litter collection from March to June 2022, we analyzed 14,090 seeds in a privately owned study site within the watershed. Water did not exclusively disperse any species and acted as a secondary disperser. Seed density (seeds/trap) was significantly higher for bird-dispersed (n=166) and bat-dispersed (n=145) seeds than for wind-dispersed (n=79) seeds (One-way analysis of variance [ANOVA]: F2,87=16.21, P<0.0001). Species number (species/trap) was significantly higher for bird-dispersed (n=3.7) and bat-dispersed (n=3.9) seeds than for wind-dispersed (n=0.2) seeds (One-way ANOVA: F2,87=16.67, P<0.0001). Birds dispersed more species because they are more diverse and access a wider variety of fruits, unlike bats. Birds and bats target different fruits and provide separate seed dispersal services. Generalized linear model analyses revealed that the number and basal area of fleshy fruit trees most strongly influenced the bird seed dispersal patterns. Therefore, we recommend a three-way approach to restoration efforts in the Caliraya Watershed: (1) ensure the presence of fleshy fruit trees in restoration zones, (2) assist the establishment of mid-successional and wind-dispersed trees, and (3) intensify the conservation efforts for both flora and faunal diversity.


3
Chulgoo Kim(National Institute of Ecology) ; Jong-Yun Choi(National Institute of Ecology) ; Byungwoong Choi(National Institute of Environmental Research) ; JunSeok Lee(National Institute of Ecology) ; Yonglak Jeon(National Institute of Ecology) ; Taewoo Yi(National Institute of Ecology) 2021, Vol.2, No.4, pp.259-273 https://doi.org/10.22920/PNIE.2021.2.4.259
초록보기
Abstract

We conducted a study to investigate the characteristics of the carbon cycle of two streams (located in Shiga Prefecture, Japan), having similar size, namely, the Adokawa stream (length: 52 km, area: 305 km2, watershed population: 8,000) and the Yasukawa stream (length: 62 km, area: 380 km2, watershed population: 120,000), but with different degree of human activity. Samples were collected from these two streams at 14 (Adokawa stream) and 23 (Yasukawa stream) stations in the flowing direction. The dissolved inorganic carbon (DIC) concentration and the stable carbon isotope ratio of DIC (δ13C-DIC) were measured in addition to the watershed features and the chemical variables of the stream water. The δ13C-DIC (-9.50 ± 2.54‰), DIC concentration (249 ± 76 μM), and electric conductivity (52 ±13 μS/cm) in Adokawa stream showed small variations from upstream to downstream. However, the δ13C-DIC (-8.68 ± 2.3‰) upstream of Yasukawa stream was similar to that of Adokawa stream and decreased downstream (-12.13 ± 0.43‰). DIC concentration (upstream: 272 ± 89 μM, downstream: 690 ± 37 μM) and electric conductivity (upstream: 69 ± 17 μS/cm, downstream: 193 ± 37 μS/cm) were higher downstream than upstream of Yasukawa stream. The DIC concentration of Yasukawa stream was significantly correlated with watershed environmental variables, such as, watershed population density (r = 0.8581, p<0.0001, n = 23), and forest area percentage of the watershed (r = -0.9188, p<0.0001, n = 23). δ13C-DIC showed significant negative correlation with the DIC concentration (r = -0.7734, p<0.0001, n = 23), electric conductivity (r = -0.5396, p = 0.0079, n = 23), and watershed population density (r = -0.6836, p = 0.0003, n = 23). Our approach using a stable carbon isotope ratio suggests that DIC concentration and δ13C-DIC could be used as indicators for monitoring the health of stream ecosystems with different watershed characteristics.


Proceedings of the National Institute of Ecology of the Republic of Korea