바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Search Word: Movement, Search Result: 4
1
Kisup Lee(Waterbird Network Korea) ; In-Ki Kwon(Research Center for Endangered Species, National Institute of Ecology) 2021, Vol.2, No.4, pp.285-292 https://doi.org/10.22920/PNIE.2021.2.4.285
초록보기
Abstract

We investigated habitat use and home range of a rescued and released white-naped crane using GPS tracking technology in Cheorwon, South Korea, from October 2016 to March 2017. Four types of roosting sites were identified: frozen reservoirs, paddy fields, rivers, and wetlands. Upon arrival, the white-naped crane preferred wetlands in the Demilitarized Zone (DMZ). In late wintering season, it showed a tendency to change main roosting sites in the following order: rice paddies, rivers, and frozen reservoirs. Among 14 sleeping places, Civilian Control Zone (CCZ) with various type of available habitats was more preferred than the DMZ. Places outside of CCZ were rarely used due to anthropogenic disturbances during the night. The tracked white-naped crane widely chose daytime feeding sites while moving around all over rice paddies in the CCZ. Mean diurnal movement distance was 10.5 km with a maximum of 24.8 km. Its home range measured with Minimum Convex Polygon (MCP) and Kernel Density Estimation (KDE) was 172.30 km2 with MCP, 159.60 km2 with KDE 95%, 132.48 km2 with KDE 90%, and 42.45 km2 with KDE 50%. All estimated values of home ranges were higher in the early and later winter than those in the middle period.


초록보기
Abstract

Understanding the carrying capacity of a habitat is crucial for effectively managing populations of wild boars (Sus scrofa), which are designated as harmful wild animal species in national parks. Carrying capacity refers to the maximum population size supported by a park's environmental conditions. This study aimed to estimate the appropriate wild boar population size by integrating population characteristics and habitat suitability for wild boars in the Bukhansan National Park using the HexSim program. Population characteristics included age, survival, reproduction, and movement. Habitat suitability, which reflects prospecting and resource acquisition, was determined using the Maximum Entropy model. This study found that the optimal population size for wild boar ranged from 217 to 254 individuals. The population size varied depending on the amount of resources available within the home range, indicating fewer individuals in a larger home range. The estimated wild boar population size was 217 individuals for the minimum amount of resources (50% minimum convex polygon [MCP] home range), 225 individuals for the average amount of resources (95% MCP home range), and 254 individuals for the maximum amount of resources (100% MCP home range). The results of one-way analysis of variance revealed a significant difference in wild boar population size based on the amount of resources within the home range. These findings provide a basis for the development and implementation of effective management strategies for wild boar populations.


3
Temitope A. Olatoye(National Agricultural Seeds Council) ; Ohseok Kwon(Department of Plant Medicine, College of Agriculture and Life Sciences, Kyungpook National University) ; Kayode L. Akinwande(Department of Biology, School of life Sciences, Federal University of Technology) 2024, Vol.5, No.1, pp.10-20 https://doi.org/10.22920/PNIE.2024.5.1.10
초록보기
Abstract

The study investigated species diversity, relative abundance, and decline of flying insects and plants within a fragmented forest in the Federal University of Technology Akure (FUTA), Ondo State, Nigeria. It is known that habitat fragmentation can reduce biodiversity. Thus, it is important to perform comprehensive assessments to understand implications of the habitat fragmentation for flora and fauna. Species richness and abundance of flying insects and plants across fragmented forest patches were quantified using field surveys and taxonomic identification. This study revealed shifts in species diversity, with fragmented areas exhibiting reduced biodiversity compared to contiguous forest ecosystems. Flying insects crucial for ecosystem functioning and pollination services demonstrated decreased species richness and relative abundance within fragmented habitats. This decline was attributed to habitat loss, altered microclimates, and limited movement pathways known to hinder insect dispersal. Similarly, plant species richness and abundance showed decline in fragmented forest due to disrupted mutualistic interactions with pollinators, altered nutrient cycling, and increased competition among plant species. This study underscores the importance of maintaining intact forest habitats to sustain healthy ecosystems and preserve biodiversity. Effective conservation strategies should focus on habitat connectivity, reforestation efforts, and protection of essential ecological corridors to mitigate effects of fragmentation. In conclusion, this investigation provides empirical evidence for effects of habitat fragmentation on flying insects and plants in a forest ecosystem in FUTA Akure, Nigeria. Findings emphasize an urgency of adopting conservation measures to safeguard these invaluable components of biodiversity and ecosystem stability in the face of ongoing habitat loss and fragmentation.


4
Seungbum Hong(Climate Change Research Team, National Institute of Ecology) ; Inyoung Jang(Climate Change Research Team, National Institute of Ecology) ; Heon-Mo Jeong(Climate Change Research Team, National Institute of Ecology) 2020, Vol.1, No.1, pp.58-67 https://doi.org/10.22920/PNIE.2020.1.1.58
초록보기
Abstract

Terrestrial ecosystems influence climate change via their climate regulation function, which is manifested within the carbon, water, and energy circulation between the atmosphere and surface. However, it has been challenging to quantify the climate regulation of terrestrial ecosystems and identify its regional distribution, which provides useful information for establishing regional climate-mitigation plans as well as facilitates better understanding of the interactions between the climate and land processes. In this study, a land surface model (LSM) that represents the land-atmosphere interactions and plant phenological variations was introduced to assess the contributions of terrestrial ecosystems to atmospheric warming or cooling effects over East Asia over the last half century. Three main climate-regulating components were simulated: net radiation flux, carbon exchange, and moisture flux at the surface. Then, the contribution of each component to the atmospheric warming or cooling (negative or positive feedback to the atmosphere, respectively) was investigated. The results showed that the terrestrial ecosystem over the Siberian region has shown a relatively large increase in positive feedback due to the enhancement of biogeochemical processes, indicating an offset effect to delay global warming. Meanwhile, the Gobi Desert shows different regional variations: increase in positive feedback in its southern part but increase in negative one in its eastern part, which implies the eastward movements of desert areas. As such, even though the LSM has limitations, this model approach to quantify the climate regulation is useful to extract the relevant characteristics in its spatio-temporal variations.


Proceedings of the National Institute of Ecology of the Republic of Korea