바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Search Word: Environmental Monitoring, Search Result: 2
1
Seung Woo Son(Department of Land and Water Environment Research, Korea Environment Institute) ; Jae Jin Yu(Department of Land and Water Environment Research, Korea Environment Institute) ; Dong Woo Kim(Department of Land and Water Environment Research, Korea Environment Institute) ; Hyun Su Park(Team of Ecosystem Service, National Institute of Ecology) ; Jeong Ho Yoon(Department of Land and Water Environment Research, Korea Environment Institute) 2021, Vol.2, No.4, pp.298-304 https://doi.org/10.22920/PNIE.2021.2.4.298
초록보기
Abstract

This study aimed to determine the applicability of drones and air quality sensors in environmental monitoring of air pollutant emissions by developing and testing two new methods. The first method used orthoimagery for precise monitoring of pollutant-emitting facilities. The second method used atmospheric sensors for monitoring air pollutants in emissions. Results showed that ground sample distance could be established within 5 cm during the creation of orthoimagery for monitoring emissions, which allowed for detailed examination of facilities with naked eyes. For air quality monitoring, drones were flown on a fixed course and measured the air quality in point units, thus enabling mapping of air quality through spatial analysis. Sensors that could measure various substances were used during this process. Data on particulate matter were compared with data from the National Air Pollution Measurement Network to determine its future potential to leverage. However, technical development and applications for environmental monitoring of pollution-emitting facilities are still in their early stages. They could be limited by meteorological conditions and sensitivity of the sensor technology. This research is expected to provide guidelines for environmental monitoring of pollutant-emitting facilities using drones.


2
Chulgoo Kim(National Institute of Ecology) ; Jong-Yun Choi(National Institute of Ecology) ; Byungwoong Choi(National Institute of Environmental Research) ; JunSeok Lee(National Institute of Ecology) ; Yonglak Jeon(National Institute of Ecology) ; Taewoo Yi(National Institute of Ecology) 2021, Vol.2, No.4, pp.259-273 https://doi.org/10.22920/PNIE.2021.2.4.259
초록보기
Abstract

We conducted a study to investigate the characteristics of the carbon cycle of two streams (located in Shiga Prefecture, Japan), having similar size, namely, the Adokawa stream (length: 52 km, area: 305 km2, watershed population: 8,000) and the Yasukawa stream (length: 62 km, area: 380 km2, watershed population: 120,000), but with different degree of human activity. Samples were collected from these two streams at 14 (Adokawa stream) and 23 (Yasukawa stream) stations in the flowing direction. The dissolved inorganic carbon (DIC) concentration and the stable carbon isotope ratio of DIC (δ13C-DIC) were measured in addition to the watershed features and the chemical variables of the stream water. The δ13C-DIC (-9.50 ± 2.54‰), DIC concentration (249 ± 76 μM), and electric conductivity (52 ±13 μS/cm) in Adokawa stream showed small variations from upstream to downstream. However, the δ13C-DIC (-8.68 ± 2.3‰) upstream of Yasukawa stream was similar to that of Adokawa stream and decreased downstream (-12.13 ± 0.43‰). DIC concentration (upstream: 272 ± 89 μM, downstream: 690 ± 37 μM) and electric conductivity (upstream: 69 ± 17 μS/cm, downstream: 193 ± 37 μS/cm) were higher downstream than upstream of Yasukawa stream. The DIC concentration of Yasukawa stream was significantly correlated with watershed environmental variables, such as, watershed population density (r = 0.8581, p<0.0001, n = 23), and forest area percentage of the watershed (r = -0.9188, p<0.0001, n = 23). δ13C-DIC showed significant negative correlation with the DIC concentration (r = -0.7734, p<0.0001, n = 23), electric conductivity (r = -0.5396, p = 0.0079, n = 23), and watershed population density (r = -0.6836, p = 0.0003, n = 23). Our approach using a stable carbon isotope ratio suggests that DIC concentration and δ13C-DIC could be used as indicators for monitoring the health of stream ecosystems with different watershed characteristics.


Proceedings of the National Institute of Ecology of the Republic of Korea